
RESEARCH ARTICLE

Strong Components of Epigenetic Memory in
Cultured Human Fibroblasts Related to Site
of Origin and Donor Age
Nikolay A. Ivanov1, Ran Tao1, Joshua G. Chenoweth1, Anna Brandtjen1, Michelle
I. Mighdoll1, John D. Genova1, Ronald D. McKay1, Yankai Jia1, Daniel R. Weinberger1,2,3,4,5,
Joel E. Kleinman1, Thomas M. Hyde1,5,6, Andrew E. Jaffe1,7,8,9*

1 Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, United
States of America, 2 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of
Medicine, Baltimore, Maryland, United States of America, 3 Department of Psychiatry and Behavioral
Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America, 4 Department
of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America,
5 Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of
America, 6 Department of Biological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland,
United States of America, 7 Department of Mental Health, Johns Hopkins Bloomberg School of Public
Health, Baltimore, Maryland, United States of America, 8 Department of Biostatistics, Johns Hopkins
Bloomberg School of Public Health, Baltimore, Maryland, United States of America, 9 Center for
Computational Biology, Johns Hopkins University, Baltimore, Maryland, United States of America

* andrew.jaffe@libd.org

Abstract
Differentiating pluripotent cells from fibroblast progenitors is a potentially transformative tool

in personalized medicine. We previously identified relatively greater success culturing dura-

derived fibroblasts than scalp-derived fibroblasts from postmortem tissue. We hypothesized

that these differences in culture success were related to epigenetic differences between the

cultured fibroblasts by sampling location, and therefore generated genome-wide DNAmeth-

ylation and transcriptome data on 11 intrinsically matched pairs of dural and scalp fibro-

blasts from donors across the lifespan (infant to 85 years). While these cultured fibroblasts

were several generations removed from the primary tissue and morphologically indistin-

guishable, we found widespread epigenetic differences by sampling location at the single

CpG (N = 101,989), region (N = 697), “block” (N = 243), and global spatial scales suggesting

a strong epigenetic memory of original fibroblast location. Furthermore, many of these epi-

genetic differences manifested in the transcriptome, particularly at the region-level. We fur-

ther identified 7,265 CpGs and 11 regions showing significant epigenetic memory related to

the age of the donor, as well as an overall increased epigenetic variability, preferentially in

scalp-derived fibroblasts—83% of loci were more variable in scalp, hypothesized to result

from cumulative exposure to environmental stimuli in the primary tissue. By integrating pub-

licly available DNA methylation datasets on individual cell populations in blood and brain,

we identified significantly increased inter-individual variability in our scalp- and other skin-

derived fibroblasts on a similar scale as epigenetic differences between different lineages of

blood cells. Lastly, these epigenetic differences did not appear to be driven by somatic

mutation—while we identified 64 probable de-novo variants across the 11 subjects, there
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was no association between mutation burden and age of the donor (p = 0.71). These results

depict a strong component of epigenetic memory in cell culture from primary tissue, even

after several generations of daughter cells, related to cell state and donor age.

Author Summary

Regenerative medicine specialists have been using a type of cell commonly found in the
skin called the fibroblast because it is easily obtained from skin samples, grows well in cul-
ture, and can be manipulated in the laboratory to de-differentiate into a primordial state
known as the induced pluripotent stem cell. These primitive stem cells can then be trans-
formed into mature tissues, such as liver or pancreas cells. Here we show that fibroblasts,
coming from different locations in the same individual, vary significantly in epigenetic
marks called DNA methylation, which are involved in the regulation of gene expression.
In addition to location-specific patterns of DNAmethylation, we also find that fibroblasts
from different anatomical locations respond differently in epigenetic patterns related to
aging. As the field of regenerative medicine advances, our study demonstrates that decid-
ing upon the source of fibroblasts from an individual to generate new tissues and organs
may be an important consideration.

Introduction
DNAmethylation (DNAm) at CpG dinucleotides plays an important role in the epigenetic reg-
ulation of the human genome, contributing to diverse cellular phenotypes from the same
underlying genetic sequence. For example, DNAm levels at particular genomic loci can accu-
rately classify different tissues [1] and even underlying cell types within tissues [2]. These stable
cell type- and tissue-discriminating loci appear to represent only a subset of "dynamic" CpGs,
approximately 21.8%, actively involved in regulation of gene expression [3]. Changes in these
epigenetic patterns across aging have been extensively studied [4], particularly in large studies
of whole blood [5–7], but subsets of these age-associated CpGs appear tissue-independent [8].

These epigenetic barcodes also play an important role in cellular reprogramming (the con-
version of somatic cells to pluripotent stem cells), a powerful and promising experimental sys-
tem in biology, genetics and personalized medicine [9]. This epigenetic reprogramming of
somatic cells to induced pluripotent stem cells (iPSCs) induces demethylation [10] followed by
specific patterns of subsequent DNA methylation that can reflect the original somatic tissue
[11]. Fibroblasts are one of the most popular cell types for generating iPSCs [12], particularly
from skin, given the relative ease of access to these cells, although other skin-derived cell types
such as keratinocytes from the same individual generate similar iPSC lines [13]. Skin, however,
is perhaps the most susceptible tissue source in the body to environmentally induced insult,
particularly through sunlight and chemical exposures, which can induce changes in epigenetic
patterns [14]. The epigenetic “memory” of source tissue for iPSC characterization has been
well characterized [11].

In our previous work, we successfully cultured fibroblast lines from the dura mater of post-
mortem human donors, a source location largely protected from environmental insult with
slowly dividing cells [15]. We compared these cultured fibroblast lines to those derived from
scalp samples from the same individuals, and found that the rate of culture success was higher
for dura-derived fibroblasts; in some cases only the dura fibroblasts from an individual would
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culture. While the resulting cultured cells from these two sampling locations were largely mor-
phologically indistinguishable (see Figure 1 in Bliss et al, 2012 [15]), we hypothesized that
increased culture success might have a strong epigenetic component. Previous research has
shown that dermal fibroblasts from different locations in the body have distinct gene expres-
sion profiles [16], including compared to some non-dermal sources [17], and previous reports
have indicated that cultured cells have largely stable epigenomes, with the exception of a small
number of loci [18]. We therefore sought to characterize the methylomes and transcriptomes
of fibroblasts from these two sampling locations–scalp and dura–from donors across the
lifespan.

Here we identify several components of epigenetic “memory” in cultured fibroblasts after
multiple passages (i.e. splitting and continuing to grow) where primary tissue originated from
two locations in the body. The strongest epigenetic memory was related to sampling location
in the body, as we identified widespread DNAm differences at local and regional spatial scales
preserved through identical culturing processes. We further find increased stochastic epige-
netic variability in cultured fibroblasts from the scalp compared to dura. This increased vari-
ability manifested in significant increased quantitative pairwise methylome-wide distances in a
combined analysis with publicly available DNAm data on skin fibroblasts [19], pure cell popu-
lations from peripheral blood [20], and cells from the dorsolateral prefrontal cortex [21].
Another component of epigenetic memory was related to the age of the donor, including a sub-
set of CpGs that displayed location-dependent changes through aging. The epigenetic differ-
ences between these fibroblasts appear to occur largely through epigenetic-dependent
mechanisms, as there were few differences in coding sequence across the fibroblasts from the
two locations within the same individual. These results demonstrate the effect of epigenetic
memory in cultured fibroblasts by sampling location and donor age in morphologically indis-
tinguishable cells.

Results
Wemeasured DNA methylation (DNAm) levels from scalp- and dura-derived cultured fibro-
blasts in 11 postmortem donors (22 samples) from across the lifespan, ranging from early
infancy to 85 years (S1 Fig, S1 Table), using the Illumina HumanMethylation450 microarray
(Illumina 450k) [22]. After data processing, normalization, and quality control with the minfi
package [23], we obtained normalized data on 21 samples (one dura sample with lower quality
was removed prior to across-sample normalization) across 456,513 probes (probes with single
nucleotide polymorphisms, SNPs, at the target CpGs or single base extension sites were
removed, as were probes on the sex chromosomes, see Methods).

Strong components of epigenetic memory by primary cell sampling
location
We first characterized differences in DNAm levels from cultured fibroblasts derived from dif-
ferent locations (scalp versus dura). Many probes, targeting individual CpGs, were differen-
tially methylated between scalp- and dura-derived fibroblasts– 101,989 (22%) at genome-wide
significance (false discovery rate, FDR< 5%, see Methods). These significant DNAm differ-
ences between cultured fibroblasts from the scalp and dura were large in magnitude, with
57,704 probes having differences in DNAm levels greater than 10%, and 23,752 with differ-
ences greater than 20% (Fig 1A). The directionality of these DNAm differences was balanced,
with approximately equal proportions of CpGs showing increased versus decreased methyla-
tion in cultured fibroblasts from scalp compared to dura. These differentially methylated
probes (DMPs) were widely distributed across the genome, as 18,551 genes (defined by UCSC
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knownGene database) had at least one DMP within 5 kilobases (kb), as did 33,247 transcripts
(see Methods). These widespread single CpG differences manifest as the largest component of
variability in the entire dataset, as the first principal component (Fig 1B, explaining 38% and
62.3% of the variability before and after surrogate variable analysis, SVA [24]) represents the
sampling location of these cultured fibroblasts, suggesting a strong epigenetic memory of origi-
nal cell location.

Fig 1. DNAmethylation patterns in dura- and scalp-derived fibroblasts. (A) Histogram of difference in DNAm levels at CpGs/probes between scalp and
dura derived fibroblasts (on the proportion methylation scale). (B) The first principal component (PC1) of the DNAm data plotted against fibroblast sampling
location (scalp versus dura). (C) Example significant differentially methylated region (DMR) that overlaps the gene RUNX3, with DNAm levels on the y-axis
and genomic coordinates on the x-axis. (D) Example significant DNAm block, with DNAm levels on the y-axis and genomic coordinates on the x-axis. Gene
annotation panels in C and D are based on Ensembl annotation–dark blue represents exons and light blue represents introns.

doi:10.1371/journal.pgen.1005819.g001
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Since these differentially methylated CpGs tended to cluster in a smaller number of genes,
we further identified 697 differentially methylated regions (DMRs) at stringent genome-wide
significance (family-wise error rate, FWER< 10%)–these regions were identified based on
adjacent probes showing directionally-consistent differences in DNAm> 10% between groups
[25] (see Methods). For example, we identified a region of 24 contiguous probes hypermethy-
lated in scalp-derived fibroblasts within the gene RUNX3 –a tumor suppressor that plays an
integral role in regulating cell proliferation and the rate of apoptosis [26] (Fig 1C, see S2 Fig
and S2 Table for all significant DMRs). Regional differences, particularly in CpG island shores,
previously have been shown to better distinguish tissues and cell types [1] and correlate with
neighboring gene expression levels [23] than individual CpGs. Unlike at the single CpG level,
which had balanced directionality of differential methylation, the majority of DMRs had higher
DNAm levels in fibroblasts derived from scalp compared to those derived from dura (N = 414,
59.4%). Using gene sets defined by biological processes [27], these neighboring genes (within 5
kb) were strongly enriched for morphogenesis (including morphogenesis of the epithelium),
developmental processes, cell differentiation, and epithelium and connective tissue develop-
ment, among other more general gene sets (all p< 10−8, S3 Table).

In addition to the extensive differential methylation at both the CpG and regional level, we
identified 243 long-range regions with consistent significant methylation change
(FWER< 10%), called “blocks” [28], using an algorithm adapted from whole genome bisulfite
sequencing (WGBS) data to Illumina 450k [23]. A representative significant block is shown in
Fig 1D (see S3 Fig for all significant blocks at FWER< 10%). Blocks have now been identified
across many cancer types [29], and tend to associate with higher order chromatin structure
including nuclear lamin-associated domains (LADs) [30] and large organized chromatin K9
modification (LOCKs) [28]. The 243 significant blocks in our data represent 41 Mb of sequence
and contain 298 annotated genes. These blocks contain 41 of the significant DMRs that differ-
entiate sampling location of the fibroblasts, and more interestingly, every block overlaps at
least one “dynamic” cell/tissue DMR identified using WGBS data from Ziller et al (2013) [3].

While these cultured fibroblasts were several generations/passages removed from the pri-
mary tissue and morphologically indistinguishable, we nevertheless found widespread epige-
netic differences by sampling location of the primary fibroblasts at varying spatial scales,
suggesting a strong epigenetic memory of the original cell location.

Epigenetic memory related to original cell location manifests in the
transcriptome
We next sought to determine the functional correlates of the widespread epigenetic differences
identified between scalp- and dura-derived fibroblasts by performing RNA sequencing (RNA-
seq) on polyadenylated (polyA+) mRNA from the same cultured samples (see Methods).
Briefly, we aligned the reads to the transcriptome using TopHat [31] and generated normalized
gene counts (as fragments per kb per million mapped reads, FPKM) based on the Illumina iGe-
nome hg19 annotation using the featureCounts software [32]. A median of 88.0% (interquartile
range, IQR: 85.5%– 88.8%) of reads mapped to the genome, of which a median of 84.7% (IQR:
84.4%–85.5%) mapped to the annotated transcriptome (see S1 Table for sample-specific per-
centages). We identified 11,218 expressed genes with average FPKM expression greater than
1.0. Initial clustering of the gene FPKM values separated the fibroblast samples by location in
the first principal component (PC), which explained 35.4% of the variance (S4 Fig), mirroring
the first principal component of the DNAm data (Fig 1B). We could further cluster our sam-
ples by sampling location using a set of 337 genes (of which 210 were in our dataset) that were
previously identified by Rinn et al [17] to group largely dermal fibroblasts by their anatomical
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sites of origin (S5 Fig)–these genes better clustered the samples by sampling location than ran-
dom sets of 210 genes (p<0.001, see Methods). Differential expression analysis of the RNA-seq
data, independent of the results from the epigenetic analyses above, identified many genes that
differed by the source of the primary fibroblast– 5,830 genes at FDR< 5%. Both scalp- and
dura-derived fibroblasts expressed high levels of Fibroblast Specific Protein-1 (FSP-1) and this
gene was more highly expressed scalp-derived fibroblasts (fold change = 5.5, FDR = 5.6x10-6)
in line with increased higher proliferation rates in the scalp-derived versus dura-derived fibro-
blasts [15]. The differentially expressed genes were strongly enriched for signaling and cell
communication, cell proliferation, apoptotic processes, and epithelium development and mor-
phogenesis via gene ontology (GO) analysis (all p< 10−8, S4 Table)–these gene sets were simi-
lar, and much more significant, to those identified comparing gene expression profiles across
positional-identity genes in dermal fibroblasts [17].

We next used the gene expression data as a functional readout of the differentially methyl-
ated loci identified between fibroblasts cultured from scalp and dura. The majority of signifi-
cant DMPs (76,971/101,989, 75.47%) were inside or near (within 5kb of) a UCSC annotated
gene, and 28.2% (21,742/76,971) were significantly associated with gene expression levels (at
p< 0.05). This percentage of DMPs with significant expression readout was elevated (34.9%)
among those DMPs with larger DNAm differences by sampling location (greater than 10% dif-
ference in DNAm levels). These DMPs were strongly significantly enriched among the CpG
sites that associated with expression levels at the p< 0.05 (48,062 probes within 5kb of genes,
odds ratio, OR = 3.99, p< 2.2x10-16) and FDR< 0.05 (6,559 probes within 5kb of genes,
OR = 19.54, p< 2.2x10-16) significance thresholds. Surprisingly, we found that the DNAm lev-
els at the majority of these expression-associated differentially methylated CpGs tended to be
positively associated with gene expression, regardless of overall methylation levels (un-, par-
tially-, or highly-methylated) or their location in the gene (islands, shores and shelves)–these
biases towards positive associations were statistically significant for many of these comparisons
(see S5 Table, panels A and B). We hypothesize these positive correlations could be due to the
probe design of the Illumina 450 (the majority of probes are in lowly methylated regions) com-
bined with the majority of genes having low expression (38.75% had mean FPKMs< 1).

We identified similar associations using transcript-level expression data using the Sailfish
program [33] (see Methods) on the above transcriptome– 76.5% (77,981/101,989) of the
DMPs were within 5 kb of a transcript, and 30.4% of them (23,672/77,981) correlated with
expression (at p< 0.05). 33,247 unique transcripts overlapped or were within 5 kb of DMPs,
and of them, 27.0% (8,981/33,247) exhibited significant correlation between DNAm and
expression (at p< 0.05). The 33,247 transcripts proximal to the DMRs corresponded to 18,699
genes, the majority of which (84.3%, 15,761/18,699) contained more than one transcript. Inter-
estingly, these associations often appear in a transcript-specific manner—6,190 genes (39.3%)
had� 1 transcript with significant correlation between DNAm and expression (at p< 0.05),
with� 1 transcripts that were not associated with nearby CpG levels. These results suggest that
genes, and their underlying transcripts, can functionally validate many of the differentially
methylated CpGs for sampling location.

Moving beyond individual CpGs, 587/697 (84.2%) DMRs were in or near (<5kb) genes,
and many had DNAm levels that were significantly associated with gene expression levels
(306/587, 52.1% at p< 0.05). For instance, a DMR overlapping an intronic sequence of the
SIM1 gene (Fig 2A) was unmethylated with low corresponding expression of the gene in the
cultured fibroblasts from dura, and highly methylated with corresponding high expression lev-
els of the gene in the scalp-derived fibroblasts (Fig 2B and S2 Table). This is in line with previ-
ous reports suggesting that gene body methylation levels positively associate with local gene
expression [34], unlike CpG island shore methylation that tends to be negatively associated
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Fig 2. Regional DNAmethylation changesmanifest in the transcriptome. (A) Plot of the DNAm levels (proportion methylation) of an example significant
DMR, which overlaps the gene SIM1. (B) Plot of the average DMRDNAm levels versus the expression level of SIM1, showing high positive correlation
(p = 4.67x10−8).

doi:10.1371/journal.pgen.1005819.g002
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with gene expression levels [1]. Of the 478 unique genes in or within 5kb of DMRs, the expres-
sion of 235 (49.2%) of them was significantly correlated with DNAm (p< 0.05). These 235
unique genes tended to exhibit stronger differential expression between the scalp- and dura-
derived fibroblasts (median fold change = 1.59, IQR = 1.23–2.68) than individual CpG results,
in line with previously published findings [23]. GO analysis on expression-associated genes
proximal to DMRs revealed enrichment for multiple important biological processes such as
connective tissue development, epithelium morphogenesis and development, cell differentia-
tion (specifically including epithelial cell differentiation), and cell proliferation (including epi-
thelial cell proliferation), among other more general sets (all p< 10−8, see S6 Table). Unlike at
the single CpG-level, we found that the majority of DMRs in and around the transcriptional
start sites of genes (CpGs islands and shores) were negatively correlated with gene expression
(S5 Table), in line with previous research [1]. We observed similar methylation-expression
associations using transcript-level expression measurements– 312/599 DMRs (52.1%) near� 1
transcripts associated with expression, and like at the single CpG level, found evidence for tran-
script-specific epigenetic regulation of expression (among 28.9% of genes containing multiple
transcripts and associated with DNAm levels within the DMRs).

Lastly, we found that the majority of differentially methylated blocks contained at least one
gene and transcript differentially expressed between scalp- and dura-derived fibroblasts. The
majority of blocks contained at least one gene (N = 188/243, 77.4%); 63.8% (N = 120/188) had
at least one gene and 66.66% (N = 124/186) at least one transcript that was differentially
expressed (at p< 0.05).

As a representative example, one of the blocks, hypermethylated in scalp-derived fibroblasts,
overlaps theHOXB gene cluster (Fig 3A), which has previously been shown to be play a role in
the position identities of fibroblasts [17]. In this block, expression levels of theHOXB genes are
significantly greater in fibroblasts cultured from scalp than those from dura (Fig 3B), which
contrasted previous microarray-based data showing these genes were not expressed in dermal
samples taken from the head [17] highlighting the improved precision of RNA-sequencing
data to quantify expression levels. Similarly, the 188 significant blocks contained 298 unique
genes, and 126 of them (42.3%) were differentially expressed (at FDR< 0.05) which is a higher
proportion than the rest of the transcriptome (0.42 vs. 0.32, p = 3.79x10-9).

Given the strong association between DNAm levels and local expression levels, we sought to
more fully examine the epigenetic states of these sampling location-associated DNAm differ-
ences. We downloaded chromatin state data (18 states) from the NIH Roadmap Epigenomics
Consortium on the four available fibroblast samples (2 primary foreskin, 1 adult dermal, and 1
lung) [35], and mapped our DMPs, DMRs, and blocks for fibroblast sampling location onto
these states (S7 Table). The CpGs differentially methylated by sampling location were largely
enriched for enhancer chromatin states, including preferential enrichment of genic (EnhG2)
and active (EnhA1) enhancer states and depleted for active transcriptional start site (TSS)
states (TssA). At the region level, DMRs were largely enriched for bivalent TSS (EnhBiv) and
repressive polycomb (ReprPC) states and depleted for transcription (Tx) genic enhancer
(EnhG2) states, and blocks were strongly enriched for quiescent (Quies) and heterochromatin
(Het) states and depleted for transcriptional states. These enrichments were relatively con-
served across the four Roadmap fibroblast samples, further suggesting distinct epigenetic states
in scalp- compared to dura-derived fibroblasts. These results suggest that epigenetic memory
related to original cell location manifests in genomic state differences and largely reads out in
the transcriptome, particularly among regional changes in DNAm related to fibroblast sam-
pling location.
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Fig 3. Long-range DNAmethylation changesmanifest in the transcriptome. (A) Plot of the DNAm levels (proportion methylation) of a significant DNAm
block overlapping genes in the HOX family. Y-axis: proportion DNAm levels, x-axis: genomic coordinates on chromosome 17. (B) Corresponding expression
levels of the HOX genes within the DNAm block are more highly expressed in the scalp. Y-axis: log2 transformed fragments per kilobase per million mapped
(FPKM), x-axis: sampling location.

doi:10.1371/journal.pgen.1005819.g003
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Increased stochastic variability in scalp-derived fibroblasts
We hypothesized that scalp-derived fibroblasts might have more variable levels of DNAm than
dura-derived fibroblasts, given the chronic exposure to environmental factors (e.g. sunlight,
chemicals) in the primary tissue across the lifespan. At the individual CpG level, we tested for
differences in variance between the scalp- and dura-derived fibroblasts independent of the
underlying mean methylation levels [36] (see Methods section). While only two probes reached
genome-wide significance (at FDR< 0.05) for differences in variance, at marginal levels of sig-
nificance (p< 0.05), fibroblasts cultured from scalp had more variable DNAm levels than
fibroblasts cultured from dura (N = 13,169/16,330, 80.6%).

We next sought to characterize methylome-wide patterns of DNAm across these fibroblasts
in the context of other diverse cell types. After downloading and normalizing Illumina 450k
data from sorted blood [20] and frontal cortex [21], as well as skin-derived fibroblasts [19] and
melanoma samples (SKCM) from the Cancer Genome Atlas (TCGA) [37], we computed
methylome-wide Euclidean distances between and across each of the 11 cell types (see Methods
section). We noted that these cell types largely cluster by tissue source (brain, blood, and fibro-
blasts in the first two principal components and largest dendrogram splits, S6 Fig).

The inter-individual epigenomic distances, and their variability, were much greater in the
scalp-derived (as well as skin-derived) fibroblasts than dura-derived fibroblasts (p = 1.34x10-9

and p = 1.77x10-14 respectively, see Fig 4). The distances within scalp- and skin-derived fibro-
blasts were significantly larger than those calculated within pure blood and cortex cell types (p-
values range from 1.04x10-21 to<10−100). Interestingly, the inter-individual distances between
fibroblasts cultured from scalp samples were greater than the distances between different cell

Fig 4. Increasedmethylome distances within scalp-derived fibroblasts. Y-axis: methylome (Euclidean) distance between pairs of samples stratified by
cell and tissue types. CD4T: CD4+ T-cell, NK: natural killer cell, Mono: monocyte, NeuN+: neuronal DLPC cell, NeuN-: non-neuronal DLPFC cell.

doi:10.1371/journal.pgen.1005819.g004
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types within a blood cell lineage (e.g. natural killer cells versus CD4+ T-cells) which were previ-
ously suggested for different dermal fibroblasts [16] and instead more similar to distances
across lineage (e.g. natural kill cells versus monocytes). Note that comparing inter-individual
distance between two cell types (e.g. scalp- versus dura-derived fibroblasts) reflects the exten-
sive differential methylation between these two cell types (see Fig 1)—the inter-individual dis-
tances are large but the variability in distances was low.

As another example, the distances across scalp-derived fibroblasts were lower than the
inter-individual variability between neurons and non-neurons (via NeuN+ sorting), which
reflects the extensive methylation differences between these two cell types [21]. As expected,
we found the greatest methylome-wide distances and largest inter-individual variability in the
melanoma samples [28,36], which highlights the relative scale of these methylome-wide dis-
tances (ranging from pure cell types to cancer). These increased epigenomic distances may
relate to the rate of cell division, which is non-existent in neuronal cells [38] and infrequent in
T-lymphocytes at the population level [39]. The increased epigenetic variability in the scalp
samples was further not associated with differences in donor age (p> 0.05, S7 Fig), suggesting
increased epigenetic stochastic variability in scalp- (and skin-) derived fibroblasts.

Epigenetic memory related to donor age
We hypothesized that a subset of this increased variability might result from age-related diver-
gence in DNAm at individual loci that were differential by sampling location, such that young
donors would have lesser difference in DNAm levels, and older donors would have larger differ-
ences in DNAm. By fitting linear models on the difference in DNAm levels across sampling loca-
tion as a function of donor age (see Methods), we identified 7,265 CpGs associated with
diverging DNAm levels across aging (at FDR< 10%, S8 Fig). These loci appeared to be clustered
into representative patterns of their age-related changes (Fig 5). The majority of these CpGs had
significant age-related changes in fibroblasts derived from the scalp (64.0%), but not dura
(17.4%), and the magnitude of change across age was larger in scalp-derived fibroblasts–the aver-
age change in percent DNAm per decade of life was 3.13% (IQR = 1.81%-4.29%) in fibroblasts
derived from scalp compared to 1.13% (IQR = 0.295%-1.61%) in those from the dura mater.

A subset of these CpGs showing sampling location-dependent age-related changes associ-
ated with nearby gene expression levels. Most of the probes (N = 5,185/7,265, 71.4%) were
annotated to 3,553 unique genes (within 5kb) and 21.8% of these (N = 775/3,555) showed sig-
nificant correlation between DNAm and gene expression (p< 0.05). These DNAm associated
genes were enriched for multiple general developmental processes including cell development,
morphogenesis, and differentiation (all p<10−8, S8 Table). Several of the age-related CpGs
showing expression association were within genes that are involved in cell proliferation and
apoptosis. For instance, DNAm levels at two significant probes inside the gene TEAD1, which
regulates notochord development and cell proliferation [40], were significantly associated with
gene expression levels (p = 8.60x10-4 and 0.045, respectively). Another significant DNAm-
expression pair (p = 0.02) involved AVEN, a gene shown to inhibit Caspase activation in apo-
ptosis [41]. Interestingly, while we identified a large number of age-related CpGs, “DNAmeth-
ylation ages” [8] were very similar to the chronological ages of the samples (see Methods and
S9 Fig)–these associations did not differ by sampling location (p = 0.72) and there was further
no association between “DNAmethylation age” and sampling location alone (p = 0.96). The
age-associated CpGs identified here therefore suggest that altered regulation of DNAm levels
across aging occurs primarily in fibroblasts derived from scalp but not from dura, perhaps
through altered cell proliferation and apoptosis, and possibly reflecting greater exposure to
environmental agents that can affect the methylome.
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Epigenetic memory related to sampling location and age do not implicate
genetic mosaicism
Lastly, we characterized the expressed sequences of the scalp- and dura-derived fibroblasts
within each individual to examine the extent of genetic mosaicism, which may contribute to
differences in DNAm through changing the underlying genetic sequence in the fibroblasts
taken from scalp. De novo variants were called directly from the RNAseq data, and after filter-
ing by many quality metrics (see Methods) we identified 64 high-confidence candidate variants
that were discordant by sampling location in at least a single individual (S9 Table), including
22 annotated coding variants (13 synonymous and 9 non- synonymous) [42]. We found no
association between coding variant burden and subject age (p = 0.71, S10 Fig). These results
suggest that many of the location- and age-associated DNAm differences are not due to
somatic mosaicism and likely arise through epigenetic mechanisms that are maintained
through cell culture and multiple passages.

Discussion
Here we interrogated the methylomes and transcriptomes of pairs of fibroblasts cultured from
scalp and dura mater taken from the same individual, in a subject cohort that ranges in age
across the human lifespan. These cultured fibroblasts, generations removed from the primary
tissue of origin, and with indistinguishable morphology, still maintained strong components of

Fig 5. Representative patterns of age-associated changes in DNAm by sampling location. Each panel (A-H) shows mean adjusted expression levels
versus age for each of eight clusters of location-specific age-related changes in DNAm levels. Y-axis: mean-centered DNAm levels, x-axis: sample age, p-
value represents the statistical interaction between sampling location and age on DNAm levels. N: number of CpGs in the cluster. Vertical lines at each
sample indicate +/- 3 times the standard error by cluster.

doi:10.1371/journal.pgen.1005819.g005
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epigenetic “memory” related to sampling location (scalp versus dura) and differential changes
in DNAm levels across aging. The widespread differences in DNAm levels by sampling loca-
tion were identified at many spatial scales, including single CpGs, differentially methylated
regions, blocks, and globally. Furthermore, many of these differences in DNAm levels mani-
fested in the transcriptome, showing significant corresponding differences in expression for
genes most proximal to these epigenetic changes. The genes with differences in expression and
DNAm levels by sampling location were previously implicated in processes relating to cell pro-
liferation and apoptosis, which likely relate to the function of the fibroblasts in the primary tis-
sue. One might have predicted this outcome, as fibroblasts in the scalp, including those that are
cultured, turnover much more rapidly than those in the dura mater [15], which we confirmed
here with increased FSP-1 expression in the scalp-derived fibroblasts.

Another component of epigenetic memory in these cultured fibroblasts was related to ages
of the donors, where age-related changes occurred differentially by sampling location. These
age-associated loci can be clustered into general patterns of epigenetic changes by age and loca-
tion, all showing significant interaction between donor age and sampling location. While some
patterns were expected, such as divergence in DNAm levels from similar levels at birth (clusters
1, 4, 5, and 7), several other clusters showed an unexpected convergence in DNAm across
aging (clusters 2 and 3). We do note that the elderly donor (age 85) is influential in both the
statistical discovery at individual loci and in some of the subsequent clusters–larger sample
sizes can hopefully further define and replicate these observations. Also, while the fibroblasts
were analyzed from some subjects with psychiatric disorders, almost all comparisons between
scalp and dura sampling locations, and differential changes with age were naturally matched
within an individual, reducing the potential impact of diagnostic confounding. Furthermore, a
larger sample size would likely identify significant age-related divergence in DNAm at the
region level–while we found 7,265 individual CpGs, we found very few DMRs at global signifi-
cance (6 and 11 DMRs at FWER� 10% and 20% respectively). The region-finding approach
has been shown to be statistically conservative [25] and the identification of these differential
age-related changes by sampling location was based on number of donors (N = 10), not the
number of observations (N = 21). Lastly, while proliferation rates were not measured for these
particular fibroblast samples, analyses in a much larger skin biopsy sample (N = 298) showed
no association between proliferation rates and donor age [43], which was our sampling location
with the greater number of age-related changes in DNAm levels.

These age-related changes in cultured fibroblasts are one of the first examples, to our knowl-
edge, of genome-wide significant age-related changes in a pure cell population that is many
mitoses and passages from the original donor cells. Many papers have identified widespread
age-related changes in heterogeneous cell populations, like blood [5,7], brain [44], and other
tissue types [8], which may result in false positives when the underlying cellular composition
changes across aging [4]. Other papers have used individual cell populations to validate age-
associated loci identified in homogenate tissue at marginal significance [45] or have identified
age-related changes in targeted approaches at limited numbers of loci [46].

Similarly, these fibroblasts cultured from the scalp and dura mater were the first example,
again to our knowledge, of morphologically indistinguishable cells with vastly different epige-
nomic profiles. Using epigenomic distances, these two cohorts of fibroblasts were more differ-
ent in their DNAm patterns than different lineages of blood cells, while less different that
neuronal versus non-neuronal cells from the frontal cortex (Fig 4); the cells underlying each
comparison have very different morphologies and cellular function. Furthermore, the majority
of differences in DNAm levels between scalp- and dura-derived cultured fibroblasts appeared
to be determined early in development, prior to early infancy in this sample, and remained sta-
ble throughout the lifespan. Of the 101,989 significant DMPs for sampling location, 98,461
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(96.5%) were not associated with differential age-related changes. These findings demonstrate
strong components of epigenetic memory related to cell location and aging in fibroblasts cul-
tured from the scalp and dura mater from postmortem human donors.

There are important implications from this study for the field of regenerative medicine. If
fibroblasts are going to be the source for iPSCs, and ultimately differentiated tissues, the source
of these fibroblasts, and their epigenetic characteristics, may be an important consideration.
For example, these differences in cellular states in cultured fibroblasts may relate to the number
of cell divisions, as skin and scalp fibroblasts have a much quicker turnover than fibroblasts in
the dura [15]. The extent of cell division could relate to the epigenomic distances between and
across the diverse cell types we have analyzed. Analyses in larger samples of skin biopsy-
derived fibroblasts suggest that while donor age does not appear to associate with proliferation
rates of fibroblasts, the cultured cells derived from younger donors reprogrammed more read-
ily [43], which presumably has a strong epigenetic component. Further research may better
determine the extent of epigenetic memory of cell state of fibroblasts cultured from different
locations after the generation of iPSCs and subsequent differentiation into new cell types. As
the field of regenerative medicine advances, our study demonstrates that deciding upon the
source of fibroblasts from an individual to generate new tissues and organs may be an impor-
tant consideration. While it was shown that transcriptional variability by tissue of origin was
low in iPSCs (13), it was also demonstrated that the DNAm landscape in iPSCs differs greatly
by tissue or origin, and this phenomenon may explain the propensity of iPSCs derived from
different somatic tissues to differentiate into different lineages (11).

Methods and Materials

Human tissue collection
Human dural and scalp fibroblasts on which the methylation and gene expression studies were
performed were obtained from fibroblast lines derived from human post mortem scalp and dura
mater tissues. For this study, tissues from 11 individuals were used, with the ages of individuals
ranging from 0.1 to 85 years of age (see S1 Table for additional demographics). The post-mortem
tissues from 2 of the subjects were collected by the Lieber Institute for Brain Development (LIBD)
and the tissues from the remaining 9 subjects were collected by National Institute for Mental
Health (NIMH) (Clinical Brain Disorders Branch (CBDB), Division of Intramural Research Pro-
grams (DIRP)). The NIMH tissues were collected from two medical examiners (Washington, DC
office and Commonwealth of Virginia, Northern District office); the LIBD tissues were obtained
the Office of the Chief Medical Examiner (Baltimore, MD). A preliminary neurological or psychi-
atric diagnosis was given to each case after demographic, medical, and clinical histories were gath-
ered via a telephone screening on the day of donation. For each case, the postmortem interval
(PMI) (the time (in hours) elapsed between death and tissue freezing) was recorded. (See S1 Table
for PMIs and demographics for every subject used in this study). Every case underwent neuro-
pathological examinations to screen for neurological pathology. Additionally, the medical examin-
er’s office performed toxicology analysis of every subject’s blood to screen for drugs.

Dura and scalp tissue were collected at the time of autopsy. From the autopsy room, the tis-
sues were transported in separate bags: one containing cerebral dura mater and the other a 1 in
X 1 in scalp segment with hair attached. Both bags were transported on wet ice to the lab,
where the culture procedure was immediately started.

Scalp and dura tissue cultures
The dura culture medium was prepared out of 1X DMEM (Ref#11960–044, GIBCO) with 10%
by volume fetal bovine serum, 2% by volume 100X GlutaMAX (Cat#: 35050, GIBCO), 1% by
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volume Penicillin-Streptomycin/Amphotercin solution (Ref# 15140–122, GIBCO), and 1% by
volume Gentamicin solution (Cat# 17105–041, Quality Biological). This culture medium was
used in all subsequent steps of the dura culturing procedure. The scalp culture medium used
for all subsequent steps of the scalp culturing procedure was made the same way except without
the 1% Gentamycin. A rinsing solution was prepared out of 1X PBS (pH 7.2) (Ref# 21-040-CV,
Corning Life Sciences), 1% by volume Penicillin-Streptomycin/Amphotericin solution (Ref#
15140–122, GIBCO), and 1% by volume Gentamicin (Cat# 17105–041, Quality Biological).

The dissected scalp sample was washed with the rinsing solution three times, the fat tissues
were cut away, and all hair was plucked out with forceps. The scalp sample was then placed epi-
dermis side down on a dish and floated with Dispase II enzyme solution (2.4 units of the Dis-
pase II enzyme per mL of PBS, Dispase II enzyme: Cat#17105–041, GIBCO). (Dispase II
enzyme is a proteolytic enzyme used to separate the dermis from the epidermis by cleaving the
zone of the basement membrane.) The dish was covered with parafilm and foil, and placed in a
37°C incubator for 24 hours. After the 24-hour period, the epidermis was peeled away from the
dermis. The dermis was washed with the rinsing solution, dried, and cut into 2–3 mm2 pieces.
The pieces were placed in a Falcon Easy Grip tissue culture 35×10 mm dish and one drop of
scalp culture medium was added to each piece of scalp. The dish was placed in the incubator at
37°C and 5% CO2 for culturing.

A similar procedure was followed for the dura samples. Dura samples were washed with the
rinsing solution three times. Then, a few 2–3 mm2 pieces were cut from the dura mater and
placed together in an Easy Grip cell culture 35×10 mm dish. One drop of dura culture medium
was added to each dura piece. The culture dish was then placed in an incubator (at 37°C and
5% CO2) for culturing. The medium of each culture was changed to fresh medium 2–3 times
per week to promote growth of the fibroblasts. On average, fibroblast cells started to proliferate
at 7–14 days, however some samples took longer (up to 3 weeks).

Fibroblast cell cultures
The dura and scalp tissue cultures were monitored under a phase-contrast microscope. When
the fibroblast growth reached 90–95% confluence, 1 mL of a 0.25% trypsin solution
(Cat#T4049, Sigma) was added to each culture dish, and the cells were incubated for 5 to 8
min. Then, 1mL of media was added to each dish stop the enzymatic reaction. Next, the con-
tents of each culture dish were transferred into separate 15 mL Falcon conical tubes and 8mL
of media was added to each tube. The conical tubes were centrifuged for 5 min at 1100 rpm.
The supernatant was discarded, 5mL of fresh media was added to each conical tube, and the
contents of the tubes were transferred onto separate 25 cm3 cell culture Easy Flasks (Thermo
Scientific, Cat# 156367), where they were kept in cultures for 3–5 days in an incubator (at 37°C
and 5% CO2). When the cells reached 90–95% confluence, the cells from each 25 cm3 flask
were transferred onto two 75 cm3 cell culture easy flasks (Thermo Scientific, Cat# 156499) and
kept in cultures for continued growth. When the cells reached 90–95% confluence, they were
incubated with 3 mL of 0.25% trypsin solution for 5 to 8 min, after which 3mL of fresh culture
media was added to stop the enzymatic reaction. Then, the contents of the flasks were trans-
ferred into separate 15 mL Falcon conical tube and 4mL of media was added to each tube. The
tubes were centrifuged (5 min, 1100 rpm), the supernatant was discarded and the pellets con-
taining the fibroblasts were removed from the centrifuge tubes and transferred to cryoTube
vials (Cat#375418, Thermo Scientific). 0.5 mL of recovery cell culture freezing medium
(Cat#12648–010, GIBCO) was added to each vial, after which the vials were insulated with Sty-
rofoam and placed into a -80°C freezer. Later, the tubes were transferred to a -152°C liquid
nitrogen freezer.
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These frozen dura and scalp fibroblast cells were then used generate DNAmethylation and
gene expression levels. Genomic DNA was extracted from approximately 3 million cultured
human fibroblast cells using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). Bisulfite
conversion was performed on 600 ng genomic DNA was done with the EZ DNA methylation
kit (Zymo Research).

DNAmethylation data generation
DNAmethylation landscapes of the dura- and scalp-derived fibroblasts were analyzed using
the Illumina HumanMethylation 450 BeadChip array (“450k”). The 450k array interrogates
>485,000 DNAmethylation sites (probes) and measures the proportion DNA methylation at
each target site (the 450k array interrogates both CpG and CH sites). The microarray prepara-
tion and scanning were performed in accordance with the manufacturer’s protocols. The
resulting data from the 450k consists of R(ed) and G(reen) intensities using two different probe
chemistries [22], which we converted to M(ethylated) and U(nmethylated) intensities using
theminfi Bioconductor package [23], version 1.14.0 using with R version3.2. One dura sample
had lower median probe intensities and was removed prior to normalization and downstream
analyses. After quality control (QC), the M and U intensities were normalized separately across
samples using stratified quantile normalization [23]. Probes containing common SNPs (based
on dbSNP 142) at the target CpG or single base extension site, and probes on the sex chromo-
somes were removed, leaving 456,513 probes on 21 samples for analysis.

Differential methylation analysis
We determined differential methylation using linear modeling on the normalized DNAm lev-
els, using the model:

yij ¼ ai þ biLocj þ ζ iSVsj þ εij ð1Þ

where yij is the normalized proportion methylation at probe i and sample j, αi is the proportion
methylation in the fibroblasts sampled from the dura mater, βj is the difference in methylation
in the scalp-derived fibroblast, and Locj is the sampling location represented by a binary vari-
able (Dura = 0, Scalp = 1). These statistical models were adjusted for surrogate variables (6
SVs) estimated using surrogate variable analysis (SVA) [24].

Differentially methylation probes (DMPs) were identified by fitting Eq 1 to each probe, and
obtaining the corresponding moderate t-statistic and p-value using the limma package [47]. P-
values were adjusted for multiple testing using the false discovery rate (FDR) [48] and signifi-
cant probes were called were FDR< 0.05. Principal component analysis (PCA) was performed
after regressing out the surrogate variables from the DNAm levels of each probe, preserving
the effect of fibroblast sampling location. Finding differentially methylated regions (DMRs)
involves identifying contiguous probes where β 6¼ 0 using the bumphunter Bioconductor
package (version 1.6.0) [25], here requiring |β|> 0.1 (argument: cutoff = 0.1) and assessing sta-
tistical significance using linear modeling bootstrapping with 1000 iterations (argument: null-
Method = ‘bootstrap’ and B = 1000). DMRs were called statistically significant when the family
wise error rate (FWER)� 0.1. We identified blocks using the same model as above using the
blockFinder function in the minfi package [23], which collapses nearby CpGs into a single mea-
surement per sample, and then fits Eq.1 above, only here j represents probe group, not probe.
Here we again required at least a 10% change in DNAm between groups and assessed statistical
significance using the FWER based on 1000 iterations of the linear model bootstrap.
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RNA extraction and sequencing
RNA was extracted from the cultured dura and scalp fibroblasts with the RNeasy kit (Qiagen),
in accordance with the manufacturer’s protocol. RNA molecules were treated with DNase,
polyadenylated (polyA+) RNA was isolated, and resulting sequencing libraries were con-
structed using the Illumina TruSeq RNA Sample Preparation Kit (v2) and sequenced on an
Illumina HiSeq 2000. We note that while all samples were run on the same flow cell, the sam-
ples were somewhat imbalanced by lane–however, the first PC of the expression data did sepa-
rate perfectly by sampling location. Sample-specific information on reads and alignments are
available in S1 Table.

RNA-seq data generation
Resulting reads were mapped to the genome using TopHat2 [31] using the paired-ends proce-
dure (we used the option—library-type fr-firststrand). Gene counts relative to the UCSC hg19
knownGene annotation were calculated using the featureCounts script of the Subread package
(version 1.4.6) [32]. There were 23,710 genes in this annotation, and we dropped 305 genes
that were annotated to more than 1 chromosome. Of the remaining 23,405 genes, 18,316 genes
had non-zero expression counts in at least one sample. Counts were converted to FPKM (frag-
ments per kilobase per million reads mapped) values to allow comparisons across genes with
different lengths and libraries sequenced to different depths. These FPKMs were transformed
prior to statistical analysis: log2(FPKM + 1). The log transformed FPKM values were used in all
subsequent gene-level analyses.

Next, we used the Sailfish software (33), version 0.7.6, to quantify isoforms from our RNA-
seq reads. As a result, we obtained TPM (transcripts per million) values for each isoform,
which we log transformed: log2(TPM + 1). The log transformed TPM values were used in all
subsequent transcript-level analyses.

RNA-seq data analysis
Differential expression for sampling location was identified using Eq 1 above, where yij repre-
sents transformed expression (rather than DNAm) levels, and different SVs (N = 4) were calcu-
lated from the expression data.

To test whether we could use a subset of genes to cluster our fibroblasts by sampling loca-
tion, like reported by Rinn et all [17], we took the 337 genes published by the authors, which
they found to group fibroblasts by anatomical location. Of these 337, we used only 210 genes,
since a subset of the tabulated genes did not contain gene symbols, another subset was not
interrogated by our RNAseq, and yet another subset was not expressed in any of our samples.
We then perfumed Euclidean distance computations and clustering analysis by first using
these 210 genes and then repeating the analysis 1000 times using 210 randomly chosen genes.

We carried out gene ontology analysis on the differentially expressed genes with the GOstats
package [49]. Transformed FPKMs were next used to assess functional significance of differen-
tially methylated features. We mapped the DMPs to genes in the UCSC knownGenes (hg19)
and determined which DMPs exhibit correlation between DNAm and gene expression with
theMatrixEQTL package [50]. We used Pearson's Chi-squared test with Yates' continuity cor-
rection to examine whether DMPs are more likely to exhibit correlations between DNAm and
gene expression than non-DMPs. We then mapped significant DMRs to genes expressed in the
RNA-seq data (e.g. showing non-zero expression levels in� 1 samples), and correlated the
average DNAm level within the DMR to the transformed expression level. When multiple
genes were within or near a DMR, we retained the gene (and its correlation) with the largest
absolute correlation. We carried out gene ontology analysis for the genes proximal to DMRs

Components of Epigenetic Memory in Cultured Human Fibroblasts

PLOS Genetics | DOI:10.1371/journal.pgen.1005819 February 25, 2016 17 / 23



with the GOstats package. For each significant block, we found the UCSC annotated gene(s)
containing within the block and their evidence for differential expression as calculated above.
We used Pearson's Chi-squared test with Yates' continuity correction to test whether differen-
tially expressed genes were enriched in blocks compared to the rest of the transcriptome.
Finally, we analyzed the directionality of DNAm—expression correlations for DMPs and
DMRs, as a function of DMR/DMP positions relative to genes. We used the binomial test to
access the significance of distributions between positive and negative correlations of DNAm
and gene expression.

In addition to gene-level analysis, we studied transcript-level expression and its correlation
with DNAm. We carried out the same analysis for isoform expression as for gene-level expres-
sion, with the exception that here we used relative isoform abundance values that we obtained
with the Sailfish software (see above).

Chromatin state analysis
The 18-chromatin state data, derived using hidden Markov models (HMMs), was obtained for
4 fibroblast samples: samples E055 and E056 (foreskin primary fibroblasts), E126 (adult dermal
fibroblast), and E128 (lung fibroblsts) in the Epigenome Roadmap project22 (http://egg2.wustl.
edu/roadmap/web_portal/chr_state_learning.html). The chromatin states overlapping DMPs,
DMRs, and blocks were obtained, and compared to a background of all 450k probes, consid-
ered probe groups, and collapsed probe groups respectively. Overlap was assessed based on the
total coverage (in base pairs) of the chromatin states. Fold changes for enrichment of> 1.5
fold were highlighted. Prior to carrying out the enrichment analysis, the sex chromosomes and
the mitochondrial chromosome were dropped.

Processing of public data and distance calculations
We performed a second larger data processing and normalization procedure on our scalp- and
dura-derived fibroblasts after adding data from skin fibroblasts (GSE52025) [19], pure popula-
tions of blood [20] and prefrontal cortex cells [21] from the FlowSorted.Blood.450k and Flow-
Sorted.DLPFC.450k Bioconductor packages respectively, and then melanoma data from TCGA
[37]. The M and U channels were combined across all experiments and then normalized with
stratified quantile normalization as described above. We then dropped the probes on the sex
chromosomes as well as probes that are common SNPs (based on dbSNP 142) as described
above. Within the normalized data, we then calculated all pairwise Euclidean distances on the
proportion methylation scale, and selected specific comparisons to display in Fig 4.

Differential variability and age related changes by tissue type
We calculated differential variability between scalp and dura CpG DNAm levels using the
Levene test [51] and subsequent p-values were adjusted for multiple testing using the FDR. We
filtered out the 101,989 genome-wide significant probes showing mean methylation differences
by sampling location, as there is a strong mean-variation relationship in DNAm data due to
being constrained within 0 and 1 (e.g. gaining methylation from an unmethylated state or los-
ing methylation from a fully methylated state increases variance).

We tested for probes that showed differential age-related divergence in DNAm by fibroblast
sampling location. First, we calculated the difference in DNAm between scalp- and dura-
derived fibroblasts from the same individual at every probe (creating a 456,513 probe by 10
individual matrix). We then computed 3 surrogate variables (the number estimated by the
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SVA algorithm) for a statistical model with donor age, and fit the following linear model:

Dyij ¼ gi þ diAgej þ ζSVs1j þ εij ð2Þ

where Δyji is the difference in DNAm levels between scalp and dura for probe i and individual
j, γi is the difference in DNAm levels at birth, Agei is the age of the donor, and δi is the change
in the difference of DNAm per year of life. We then generated a Wald statistic and correspond-
ing p-value for δi and adjusted for multiple testing via the FDR. Post hoc age-related changes,
e.g. the change in DNAm levels per year of life, were calculated within the scalp and dura sam-
ples. We then associated expression of nearby genes (within 5kb) with the DNAm levels at the
probes showing significant age-by-location effects and performed gene ontology on the signifi-
cant genes with the GOstats package [49]. We lastly computed the “DNAm age” of our scalp
and dura samples using the R code published by S. Horvath, (available at https://labs.genetics.
ucla.edu/horvath/dnamage/) and fit a linear model containing main effects of biological age
and sampling location, and an interaction term between these two variables on “DNAm age”.

Variant calling
We called expression variants directly from the RNA sequencing alignments using samtools
(version 1.1) and mpileup across all samples [52]. We then filtered variants in the resulting var-
iant call format (VCF) file based on coverage (<20), variant distance bias (p<0.05), read posi-
tion bias (p<0.05), mapping quality bias (p<0.05), base quality bias (p<0.05), inbreeding
coefficient binomial test (p<0.05), and homozygote bias (p>0.05). The resulting 64 high qual-
ity variants were annotated with SeattleSeq138 [42].

Study approval
For every subject from whom the post-mortem tissues were collected, informed consent was
obtained verbally from the legal next-of-kin using a telephone script, and was both witnessed
and audiotaped, in accordance with the IRB approved NIMH protocol 90-M-0142 and the
Department of Health and Human Services for the State of Maryland (protocol # 12–24).

Data availability
DNAmethylation data in both raw and processed forms are available on the Gene Expression
Omnibus (GEO): GSE77136. RNA sequencing reads (raw data) are available on the Sequencing
Read Archive (SRA): SRP068304 (BioProject: PRJNA286856) and the genes and transcript
counts (processed data) are available on GEO at the above accession number (GSE77136).

Supporting Information
S1 Fig. Experimental setup.We took dura and scalp samples from 11 donors ranging from 0.1
to 85 years of age. We then extracted and cultured fibroblasts from these samples, and per-
formed genome-wide DNA methylation and RNA sequencing procedures on these fibroblasts.
(PDF)

S2 Fig. DMR plots. DNAmethylation levels (proportion methylation) of all 697 significant
DMRs (FWER< 10%).
(PDF)

S3 Fig. DNAmethylation “blocks” plots. DNAmethylation levels (proportion methylation)
of all 243 significant differentially methylated blocks (FWER< 10%).
(PDF)
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S4 Fig. Principal component analysis plots. The first principal component (PC1) of the gene
expression data plotted against fibroblast sampling location (scalp versus dura). The first PC of
the gene expression data mimics the first PC of the DNAm data; both represent sampling loca-
tion.
(PDF)

S5 Fig. Separation of fibroblasts by anatomical site of origin based on differential expres-
sion of a previously reported subset of genes.When we analyzed the expression of 210 genes
(which were found to demarcate fibroblasts by anatomical site of origin (17)), our samples sep-
arated into categories by their sampling location. When these 210 genes were used, the mean
Scalp-Dura Euclidean distance was 27.53; when we performed 1000 iterations taking random
subsets of genes, the range of mean Scalp-Dura Euclidean distances was 7.58–14.67.
(PDF)

S6 Fig. Clustering analysis on DNAm data from cells of different tissues. (A) PC1 with
respect to PC2 of the DNAm data from the following cells: various cells of the blood; neuronal
(NeuN+) and glial (NeuN-) cells from the DLPFC; cultured fibroblasts derived from skin, dura
mater, and scalp; cells from a primary solid skin tumor. (B) Cluster dendrogram constructed
from the DNAm data from the cells in panel A.
(PDF)

S7 Fig. Epigenomic distance within scalp-derived fibroblasts with respect to age differences
between subjects.
(PDF)

S8 Fig. Age related DNAm divergence.DNAm plotted with respect to age for all 7,265 CpGs
significantly associated with diverging DNAm levels across aging (at FDR< 10%).
(PDF)

S9 Fig. “DNAmethylation age” with respect to chronological age of the scalp- and dura-
derived fibroblasts.
(PDF)

S10 Fig. Number of coding variants with respect to subject age.
(PDF)

S1 Table. Tissue donor demographics and RNAseq read alignment data.
(XLSX)

S2 Table. Information on significant DMRs (FWER< 10%).
(XLS)

S3 Table. DMR Gene Ontology. Gene Ontology on genes that overlap or are proximal to
(within 5kb) of significant DMRs (FWER< 10%).
(XLS)

S4 Table. Gene Ontology on genes differentially expressed between scalp- and dura-derived
fibroblasts (FDR< 5%).
(XLS)

S5 Table. Directionality of correlations between DNAmethylation and gene expression.
(XLSX)

S6 Table. DMR Gene Ontology. Gene Ontology on genes that overlap or are proximal to
DMRs (within 5 kb) and exhibit significant correlation between gene expression and DNAm
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(XLSX)

S8 Table. Gene Ontology on genes whose expression is correlated with nearby diverging
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